卷积神经网络重要论文资源合辑

这篇文章简单介绍下卷积神经网络的发展历程以及其中涉及到的重要论文。这些论文中,有些论文胜在思路奇特,有些胜在效果优秀,有些则胜在方法严谨,推理优美。希望有时间写一些具体论文的解读。

论文合集GitHub地址:CNN-Papers

卷积神经网络的前身与早期发展:

  • 1980年日本学者福岛邦彦(Kunihiko Fukushima)提出的神经认知机模型(Neocognitron)
    Fukushima K, Miyake S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition[M].Competition and cooperation in neural nets. Springer, Berlin, Heidelberg, 1982: 267-285.
  • 1989年Yann LeCun提出第一个真正意义上的CNN:LeNet 1989
    LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541-551.
  • 1998年Yann LeCun在其博士论文中详细介绍了LeNet(又称LeNet-5),影响力巨大
    LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

2012年以来卷积神经网络迎来迅猛发展阶段:

  • 2012年ILSVRC(分类)冠军:AlexNet,掀起深度学习计算机视觉狂潮
    Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing systems. 2012: 1097-1105.
  • 2013年ILSVRC(分类)冠军:ZFNet
    Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C].European conference on computer vision. Springer, Cham, 2014: 818-833.
  • 2014年ILSVRC(分类)冠军:GoogLeNet,提出Inception结构
    Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Cvpr, 2015.
  • 2014年ILSVRC(分类)亚军:VGGNet,亮点是对网络深度的研究
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
  • 2015年ILSVRC(分类)冠军:ResNet,提出Residual结构
    He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C].Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

卷积神经网络结合改进与瓶颈阶段:

合理结合Inception结构与Residual结构的卷积神经网络已经能够达到令人满意的特征提取效果,但是在解释性上却没有更深一步进展。

  • 2016年Google团队结合了Inception结构与Residual 结构,提出Inception-Residual Net
    Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C].AAAI. 2017, 4: 12.
  • 2016年何凯明提出新的ResNet的想法:Identity Mapping
    He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C].European Conference on Computer Vision. Springer, Cham, 2016: 630-645.
  • 2017年DenseNet
    Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[C].Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 1(2): 3.
  • 2017年ILSVRC(分类)冠军:SENet(Squeeze-and-Excitation Networks),提出了Squeeze-and-Excitation Block,网络结合SE Block和Res Block
    Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

轻量级卷积神经网络发展阶段:

2016年以来,卷积神经网络开始往轻量化发展,为视觉深度学习模型在移动设备上的应用提供条件。

  • 2016年MobileNet
    Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
  • 2016年ShuffleNet
    Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[J]. arXiv preprint arXiv:1707.01083, 2017.
  • 2016年Xception【注:Xception目标并不是使卷积神经网络轻量化,而是在不增加网络复杂度的情况下提升性能,但其中使用的depthwise convolution思想是MobileNet等轻量级卷积神经网络的关键,故也列在这里】
    Chollet F. Xception: Deep learning with depthwise separable convolutions[J]. arXiv preprint, 2017: 1610.02357.
  • 2016年ResNeXt【注:ResNeXt也是为了在不增加网络复杂度的情况下提升性能,列在此处的原因与Xception相同】
    Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C].Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017: 5987-5995.
  • 2018年MobileNet V2
    Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
  • 2018年ESPNet【ESPNet这篇文章不是纯粹介绍CNN网络的,而是为语义分割任务设计的,但是其CNN网络也是轻量的。】
    Mehta S, Rastegari M, Caspi A, et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 552-568.
  • 2018年ShuffleNet V2
    Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
  • 2018年ESPNetV2
    Mehta S, Rastegari M, Shapiro L, et al. ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network[J]. arXiv preprint arXiv:1811.11431, 2018.
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:上身试试 返回首页